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I present a numerical algorithm for direct evaluation of multiple Grassmann integrals. The approach is exact 
and suffers no Fermion sign problems. Memory requirements grow exponentially with the interaction range and 
the transverse size of the system. Low dimensional systems of order a thousand Grassmann variables can be 
evaluated on a workstation. 

In quantum field theory fermions are usually 
treated via integrals over anti-commuting Grass- 
mann variables [2], providing an elegant frame- 
work for the formal establishment of Feynman 
perturbation theory. With non-perturbative ap- 
proaches, such as Monte Carlo studies on the lat- 
tice, these objects are more problematic. Es- 
sentially all approaches formally integrate t h e  
fermionic fields in terms of determinants depend- 
ing only on bosonic fields. When a background 
fermion density is present, as for baryon rich re- 
gions of heavy ion scattering, these determinants 
are not positive, making Monte Carlo evaluations 
tedious on any but the smallest systems[3]. This 
problem also appears in studies of many electron 
systems doped away from half filling. 

Here I explore the possibility of directly eval- 
uating the fermionic integrals, doing the neces- 
sary combinatorics on a computer[l].  This is in- 
evitably a rather tedious task, with the expected 
effort growing exponentially with volume. Nev- 
ertheless, in the presence of the sign problem, all 
other known algorithms are also exponential. My 
main result is that  this growth can be controlled 
to a transverse section of the system. I illustrate 
the technique with a low dimensional system in- 
volving of order a thousand Grassmann variables. 

I begin with a set of anti-commuting Grass- 
mann variables {¢}, satisfying ¢ i ¢ j  + ¢ j ¢ i  = 
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0. Integration is uniquely determined up to 
an overall normalization by requiring linearity 
and "translation" invariance f d e f ( ¢  + ¢ ' )  = 
f d e f ( ¢ ) .  I normalize things so that  

/d¢¢=1 fd¢l=O. (1)  

Consider an arbitrary action S(¢)  inserted into a 
path integral. I want to evaluate 

z = f d e n . . ,  d ¢ 1  e s ( ¢ ) .  (2) 

Formally this requires expanding the exponent 
and keeping all terms containing exactly one fac- 
tor of each ¢i. 

I first reduce the required expansion into op- 
erator manipulations in a Fock space. Intro- 
duce a fermionic creation-annihilation pair for 
each fermionic field, ¢i ~-+ {a~, ai}. These sat- 
isfy the usual relations [ai, aJ]+ = ~q. The space 
is built by applying creation operators to the vac- 
uum, which satisfies ail0) = 0. It is convenient 
to introduce the completely occupied "full" state 

? ? t IF) - an...a2allO ). Then I rewrite my basic path 
integral as the matr ix  element 

z = (01 e s(~) IF). (3) 
Expanding e s,  a non-vanishing contribution re- 
quires one factor of al for each Fermion. This is 
the same rule as for Grassmann integration. 

I now manipulate this expression towards a se- 
quential evaluation. Select a single variable ¢i 
and define Si(a)  as all terms from the action in- 
volving a factor of ai. I define the complement Si 
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as anyth ing  else, so tha t  S = Si + Si. I assume 
a bosonic act ion so tha t  S/ and S/ c o m m u t e  and 
Z = (O]e$'e&lF). Since S/ contains no factors 
of  ai, the occupat ion  number  for tha t  variable, 
ni = a~ai, vanishes between the two factors. I 
thus can insert a project ion opera tor  1 - ni 

Z = (0 le  ~' (1 - hi) e s ' IF) .  (4) 

Since 1 - ni projects  out  an empty  state at loca- 
t ion i, I trivially have ai ( 1 - n i )  = 0. I can replace 
Si with the full action. Also, since a 2 = 0, the 
right hand  factor  expands as e & = 1 + S/, giving 

z = (Ole s (1 - hi) (1 + & ) I F ) .  (5) 

Repeti t ion gives m y  main  result 

assuming constants  in the act ion are removed. 
Eq. (6) summarizes  the basic procedure.  Cre- 

ate an associative array (hash table) to store gen- 
eral states of  the Fock space. For a given state 
IV) = Y~., X~ I s) store the numbers  X, labeled by 
Is). Init ially this table only contains the one entry 
for the full state.  The  a lgor i thm then loops over 
the Grassmann  variables. For a given ¢i ,  first ap- 
ply (1 + S/) to  the stored state.  Then  empty  the 
location with the projector  1 - hi. After all sites 
are integrated over, only the empty  state  survives, 
with the desired integral as its coefficient. 

The  advantages  appear  with a local interaction. 
All sites previously visited are empty,  and involve 
no information.  Unvisited locations outside the 
interaction range are still filled, and also involve 
no storage. All relevant states are nontrivial  only 
for unvisited sites within range of  previously vis- 
ited sites. Sweeping th rough  the sys tem in a di- 
rection referred to as "longitudinal ,"  we only need 
keep track of a "transverse" slice of  the model.  
This is i l lustrated in Fig. (1). Al though the di- 
mension of  the Fock space is two to the number  
of  Grassmann  variables, the storage requirements 
only grow as two to the transverse volume. 

The  approach  is exact,  with no sign problems. 
The  complexi ty  grows severely with interaction 
range, p robably  l imit ing practical  applications to 
short  range interact ions in low dimensions. Note 
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Figure 1. In tegrat ing out  sequentially, visited 
sites are emp ty  and out  of  range sites are filled. 
When  integrat ing the site labeled ¢,  only those 
sites labeled "X" are undetermined.  

tha t  the effort only grows linearly with the lon- 
gi tudinal  dimension, allowing very long systems. 
This discussion has been in the context  of  "real" 
Grassmann  variables. For "complex" variables 
treat  ~b and ¢* independently.  

In the transverse direction the boundary  con- 
dit ions are arbitrary,  but  longitudinal  boundaries 
should not  be periodic. To make them so re- 
quires mainta in ing informat ion on both  the top 
and b o t t o m  layers of  the growing integration re- 
gion, squaring the difficulty. Note tha t  the tech- 
nique is similar to the finite lattice method  used 
for series expansions [4], and closely related to a 
direct enumerat ion of  fermionic world lines [5]. 

As a test, consider a spin-less fermion hopping 
along a line of  sites. I introduce a complex Grass- 
m a n n  variable on each site of a two dimensional 
lattice and s tudy  

z = f(dCd¢*)e s'+sh +s, (7) 

with the various terms 

S * t = ~ i  t ¢ i , t ( ¢ / , t  - ¢ / , ~ - 1 )  
- -  k * * ~h -- E i , t  ~[)i,t¢i+l,t q- ¢i+l,tlPi,t ( 8 )  

SI  : a E i , t  ~)~,t~)i,t~)i*+l,t~i+l,t • 

I take Aft sites in the t ime t direction and Ni 
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Figure 2. The free energy F = log(Z)/NiNt with 
a four fermion interaction as described in the text, 
plotted as a function of the number of time slices 
Aft. The chain has Ni = 50 sites. Points are 
shown for k = 1 and g = +1. 

spatial sites. The one-sided form of the tem- 
poral hopping insures an Hermitean temporal 
transfer matrix[6]. This model Bosonizes into an 
anisotropic quantum Heisenberg model, a fact not 
being used here. 

I treat t as my "transverse" coordinate, growing 
the lattice along the spatial chain. Fig. (2) shows 
the Nt dependence for the free energy with k -- 1 
and g = +1. Here memory requirements were 
reduced by using time translation invariance after 
integrating each layer. The Art -- 14 points were 
run on the RIKEN/BNL Supercomputer. 

With Monte Carlo methods, a chemical poten- 
tial term can be highly problematic due to can- 
celations. Here, however, it is just another local 
interaction of negligible cost. As an illustration, 
take S = St + Sh + SI + SM with 

S M  = M Z ~)~, t~)i't" (9) 
i,t 

This regulates the "filling," which can be approx- 
dF imately monitored as (1 + M) ~--~. I include the 

factor of 1 + M to compensate partially for fi- 
nite Nt artifacts. Fig. (3) shows the filling as a 
function of MNt on an Art = 8 by N~ = 20 lat- 
tice with a spatial hopping parameter of k = 0.1. 
Here I made a crude extrapolation in chain length 

by defining F = ~7 log ( ~ )  • Note how the 
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Figure 3. The occupancy of a 20 site chain as a 
function of the chemical potential scaled by the 
number of time slices. The flling occurs earlier 
or later depending on the sign of the coupling. 

four fermion coupling enhances the filling. 
An obvious system for future study is the Hub- 

bard model[7]. This requires 4 Grassmann vari- 
ables per site corresponding to ¢* and ¢ for spins 
up and down. Higher spatial dimensions strongly 
increase the size of the transverse volume and will 
limit practical system volumes, but this may be 
compensated for by the lack of sign problems. 
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